5,163 research outputs found

    The Quantized Hall Insulator: A New Insulator in Two-Dimensions

    Full text link
    Quite generally, an insulator is theoretically defined by a vanishing conductivity tensor at the absolute zero of temperature. In classical insulators, such as band insulators, vanishing conductivities lead to diverging resistivities. In other insulators, in particular when a high magnetic field (B) is added, it is possible that while the magneto-resistance diverges, the Hall resistance remains finite, which is known as a Hall insulator. In this letter we demonstrate experimentally the existence of another, more exotic, insulator. This insulator, which terminates the quantum Hall effect series in a two-dimensional electron system, is characterized by a Hall resistance which is approximately quantized in the quantum unit of resistance h/e^2. This insulator is termed a quantized Hall insulator. In addition we show that for the same sample, the insulating state preceding the QHE series, at low-B, is of the HI kind.Comment: 4 page

    Differing clinical characteristics between influenza strains among young healthy adults in the tropics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza infections may result in different clinical presentations. This study aims to determine the clinical differences between circulating influenza strains in a young healthy adult population in the tropics.</p> <p>Methods</p> <p>A febrile respiratory illness (FRI) (fever ≥ 37.5°C with cough and/or sore throat) surveillance program was started in 4 large military camps in Singapore on May 2009. Personnel with FRI who visited the camp clinics from 11 May 2009 to 25 June 2010 were recruited. Nasal washes and interviewer-administered questionnaires on demographic information and clinical features were obtained from consenting participants. All personnel who tested positive for influenza were included in the study. Overall symptom load was quantified by counting the symptoms or signs, and differences between strains evaluated using linear models.</p> <p>Results</p> <p>There were 434 (52.9%) pandemic H1N1-2009, 58 (7.1%) seasonal H3N2, 269 (32.8%) influenza B, and 10 (1.2%) seasonal H1N1 cases. Few seasonal influenza A (H1N1) infections were detected and were therefore excluded from analyses, together with undetermined influenza subtypes (44 (1.5%)), or more than 1 co-infecting subtype (6 (0.2%)). Pandemic H1N1-2009 cases had significantly fewer symptoms or signs (mean 7.2, 95%CI 6.9-7.4, difference 1.6, 95%CI 1.2-2.0, <it>p </it>< 0.001) than the other two subtypes (mean 8.7, 95%CI 8.5-9.0). There were no statistical differences between H3N2 and influenza B (<it>p </it>= 0.58). Those with nasal congestion, rash, eye symptoms, injected pharynx or fever were more likely to have H3N2; and those with sore throat, fever, injected pharynx or rhinorrhoea were more likely to have influenza B than H1N1-2009.</p> <p>Conclusions</p> <p>Influenza cases have different clinical presentations in the young adult population. Pandemic H1N1 influenza cases had fewer and milder clinical symptoms than seasonal influenza. As we only included febrile cases and had no information on the proportion of afebrile infections, further research is needed to confirm whether the relatively milder presentation of pandemic versus seasonal influenza infections applies to all infections or only febrile illnesses.</p

    Vanishing of phase coherence in underdoped Bi_2Sr_2CaCu_2O_8+d

    Full text link
    Coherent time-domain spectroscopy is used to measure the screening and dissipation of high-frequency electromagnetic fields in a set of underdoped Bi_2Sr_2CaCu_2O_8+d thin films. The measurements provide direct evidence for a phase-fluctuation driven transition from the superconductor to normal state, with dynamics described well by the Berezinskii-Kosterlitz-Thouless theory of vortex-pair unbinding.Comment: Nature, Vol. 398, 18 March 1999, pg. 221 4 pages with 4 included figure

    The connection between superconducting phase correlations and spin excitations in YBa2_2Cu3_3O6.6_{6.6}: A magnetic field study

    Full text link
    One of the most striking universal properties of the high-transition-temperature (high-TcT_c) superconductors is that they are all derived from the hole-doping of their insulating antiferromagnetic (AF) parent compounds. From the outset, the intimate relationship between magnetism and superconductivity in these copper-oxides has intrigued researchers. Evidence for this link comes from neutron scattering experiments that show the unambiguous presence of short-range AF correlations (excitations) in cuprate superconductors. Even so, the role of such excitations in the pairing mechanism and superconductivity is still a subject of controversy. For YBa2_2Cu3_3O6+x_{6+x}, where xx controls the hole-doping level, the most prominent feature in the magnetic excitations spectra is the ``resonance''. Here we show that for underdoped YBa2_2Cu3_3O6.6_{6.6}, where xx and TcT_c are below the optimal values, modest magnetic fields suppress the resonance significantly, much more so for fields approximately perpendicular rather than parallel to the CuO2_2 planes. Our results indicate that the resonance measures pairing and phase coherence, suggesting that magnetism plays an important role in the superconductivity of cuprates. The persistence of a field effect above TcT_c favors mechanisms with preformed pairs in the normal state of underdoped cuprates.Comment: 12 pages, 4 figures, Nature (in press

    Early clinical and laboratory risk factors of intensive care unit requirement during 2004–2008 dengue epidemics in Singapore: a matched case–control study

    Get PDF
    Background: Dengue infection can result in severe clinical manifestations requiring intensive care. Effective triage is critical for early clinical management to reduce morbidity and mortality. However, there is limited knowledge on early risk factors of intensive care unit (ICU) requirement. This study aims to identify early clinical and laboratory risk factors of ICU requirement at first presentation in hospital and 24 hours prior to ICU requirement. Method: A retrospective 1:4 matched case–control study was performed with 27 dengue patients who required ICU, and 108 dengue patients who did not require ICU from year 2004–2008, matched by year of dengue presentation. Univariate and multivariate conditional logistic regression were performed. Optimal predictive models were generated with statistically significant risk factors identified using stepwise forward and backward elimination method. Results: ICU dengue patients were significantly older (P=0.003) and had diabetes (P=0.031), compared with non-ICU dengue patients. There were seven deaths among ICU patients at median seven days post fever. At first presentation, the WHO 2009 classification of dengue severity was significantly associated (P<0.001) with ICU, but not the WHO 1997 classification. Early clinical risk factors at presentation associated with ICU requirement were hematocrit change ≥20% concurrent with platelet <50 K [95% confidence-interval (CI)=2.46-30.53], hypoproteinemia (95% CI=1.09-19.74), hypotension (95% CI=1.83-31.79) and severe organ involvement (95% CI=3.30-331). Early laboratory risk factors at presentation were neutrophil proportion (95% CI=1.04-1.17), serum urea (95% CI=1.02-1.56) and alanine aminotransferase level (95% CI=1.001-1.06). This predictive model has sensitivity and specificity up to 88%. Early laboratory risk factors at 24 hours prior to ICU were lymphocyte (95% CI=1.03-1.38) and monocyte proportions (95% CI=1.02-1.78), pulse rate (95% CI=1.002-1.14) and blood pressure (95% CI=0.92-0.996). This predictive model has sensitivity and specificity up to 88.9% and 78%, respectively. Conclusions: This is the first matched case–control study, to our best knowledge, that identified early clinical and laboratory risk factors of ICU requirement during hospitalization. These factors suggested differential pathophysiological background of dengue patients as early as first presentation prior to ICU requirement, which may reflect the pathogenesis of dengue severity. These risk models may facilitate clinicians in triage of patients, after validating in larger independent studies.Published versio

    Low temperature vortex liquid in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4

    Full text link
    In the cuprates, the lightly-doped region is of major interest because superconductivity, antiferromagnetism, and the pseudogap state \cite{Timusk,Lee,Anderson} come together near a critical doping value xcx_c. These states are deeply influenced by phase fluctuations \cite{Emery} which lead to a vortex-liquid state that surrounds the superconducting region \cite{WangPRB01,WangPRB06}. However, many questions \cite{Doniach,Fisher,FisherLee,Tesanovic,Sachdev} related to the nature of the transition and vortex-liquid state at very low tempera- tures TT remain open because the diamagnetic signal is difficult to resolve in this region. Here, we report torque magnetometry results on La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4 (LSCO) which show that superconductivity is lost at xcx_c by quantum phase fluctuations. We find that, in a magnetic field HH, the vortex solid-to-liquid transition occurs at field HmH_m much lower than the depairing field Hc2H_{c2}. The vortex liquid exists in the large field interval HmHc2H_m \ll H_{c2}, even in the limit TT\to0. The resulting phase diagram reveals the large fraction of the xx-HH plane occupied by the quantum vortex liquid.Comment: 6 pages, 4 figures, submitted to Nature Physic

    Komagataeibacter Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria

    Get PDF
    Bacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the Komagataeibacter genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the Komagataeibacter tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids. Working in Komagataeibacter rhaeticus, we describe basic parts for this system, including promoters, fusion tags, and reporter proteins, before showcasing how the assembly system enables more complex designs. Specifically, we use KTK cloning to reformat the Escherichia coli curli amyloid fiber system for functional expression in K. rhaeticus, and go on to modify it as a system for programming protein secretion from the cellulose producing bacteria. With this toolkit, we aim to accelerate modular synthetic biology in these bacteria, and enable more rapid progress in the emerging ELMs community

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Metallopanstimulin as a marker for head and neck cancer

    Get PDF
    BACKGROUND: Metallopanstimulin (MPS-1) is a ribosomal protein that is found in elevated amounts in the sera of patients with head and neck squamous cell carcinoma (HNSCC). We used a test, denoted MPS-H, which detects MPS-1 and MPS-1-like proteins, to determine the relationship between MPS-H serum levels and clinical status of patients with, or at risk for, HNSCC. PATIENTS AND METHODS: A total of 125 patients were prospectively enrolled from a university head and neck oncology clinic. Participants included only newly diagnosed HNSCC patients. Two control groups, including 25 non-smokers and 64 smokers, were studied for comparison. A total of 821 serum samples collected over a twenty-four month period were analyzed by the MPS-H radioimmunoassay. RESULTS: HNSCC, non-smokers, and smokers had average MPS-H values of 41.5 ng/mL, 10.2 ng/mL, and 12.8 ng/mL, respectively (p = 0.0001). CONCLUSION: We conclude that MPS-1 and MPS-1-like proteins are elevated in patients with HNSCC, and that MPS-H appears to be a promising marker of presence of disease and response to treatment in HNSCC patients
    corecore